A Neutron Powder Diffraction Study of ND₃ Intercalated Titanium Disulfide, 3*R*-TiS₂ND₃

H. J. M. BOUWMEESTER AND G. A. WIEGERS*

Laboratory of Inorganic Chemistry, Materials Science Center, Nyenborgh 16, 9747 AG Groningen, The Netherlands

Received December 23, 1986; in revised form June 2, 1988

Neutron powder diffraction of rhombohedral 3R-TiS₂ND₃ (a = 3.419 Å, c = 27.03 Å at 300 K, space group R3m) has shown that ND₃ molecules and ND₄⁺ ions, present in a ratio of about 5 to 1 from chemical and physical evidence, occupy statistically the trigonal-prismatic holes between TiS₂ sandwiches. One cannot distinguish between ND₃ and ND₄⁺. Powder intensities calculated for a model with spherically symmetric ND₃ molecules (corresponding to isotropically rotating ND₃ and ND₄⁺) in the trigonal-prismatic holes were in reasonable agreement with the observed intensities. Attempts to obtain information on the precise orientation of ND₃ and ND₄⁺ in the TiS₂ lattice using refinements with structure factors were not successful; the reliability R factor was 0.093 for spherical symmetric ND₃ molecules with nitrogen in the center of the trigonal-prismatic holes. (0 1988 Academic Press, Inc.

Introduction

Like the alkali metals, Lewis base molecules such as NH₃, pyridine, and long chain amines are easily intercalated in the van der Waals gap of layered transition metal dichalcogenides (1-3). The lone pair orbital of nitrogen appears to play an important factor in the stability. In fact intercalation of substituted pyridines into 2H-TaS₂ will not take place when the substituent greatly decreases the basicity of the molecule (4). The alkyl backbone of long chain amines and amides (*n*-octylamide. stearamide) is perpendicular to the sandwiches TX_2 with the NH₂ group oriented toward the layers (5). This orientation suggests that the stabil-

* To whom correspondence should be addressed.

ity is due to the energy gain from the overlap of the lone pair electrons of the NH_2 group with *d* orbitals of the transition metal.

The structures of the ammonia intercalates of transition metal sulfides, e.g., 3R-TiS₂NH₃ and 2H-TaS₂NH₃, are such that NH₃ resides in trigonal-prismatic holes between sulfur layers of neighboring sandwiches TS_2 (T = Ti, Ta). The coordination of the transition metal atoms is the same as in the host used for intercalation, a trigonally distorted octahedron for titanium and a trigonal prism for tantalum. The sandwiches are displaced with respect to the stacking in the host, sulfur atoms of neighboring sandwiches being on top of each other as shown in Fig. 1 for 3R-TiS₂NH₃. The resulting structure of the intercalate is

FIG. 1. (1120) section of the structure of 1T-TiS₂ (left) and 3R-TS₂NH₃(right). Both trigonal prismatic sites are (statistically) occupied by NH₃ (large circles); small circles represent titanium atoms.

rhombohedral, space group R3m in the case that only one of the trigonal-prismatic holes (two per unit TiS₂) is occupied by NH₃. When both sites are occupied statistically then the average structure has the centrosymmetric space group $R\overline{3}m$.

Based on the work of Schöllhorn and Zagefka (6) it is now believed that the intercalation of ammonia is accompanied by a redox reaction,

 $2\mathrm{NH}_3 \rightarrow \mathrm{N}_2 + 6\mathrm{H}^+ + 6e^-,$

the overall intercalation reaction being:

$$TX_2 + (8x + y) NH_3 \rightarrow (TX_2)^{6x-} (NH_4)^+_{6x} (NH_3)_{\gamma} + xN_2^{\prime}.$$

In the resulting ionic structure, part of the ammonia is present as NH_4^+ ions solvated by neutral molecules NH_3 ; 6x = 0.1-0.3, 6x + y = 1. A similar reaction scheme has been proposed for pyridine intercalated phases because of the formation of dipyridine (7).

Bernard *et al.* (8) came from an analysis of the products released during deintercalation of TiS_2NH_3 (in the following we will use this formula to indicate a fully intercalated compound disregarding the presence of NH₃) to the same conclusion: the amount of NH₄⁺ per unit TiS₂ was estimated to be 0.2.

Several models were proposed for the orientation of NH_3 (and NH_4^+) inside the trigonal prism of sulfur atoms. The model proposed in the early stage of the study of NH₃ intercalates was that by Cousseau et al. (9); they assumed that the lone pair orbital of nitrogen (along the C_3 axis) is perpendicular to the sandwiches (plugged in model, Fig. 2a). X-ray powder diffraction of NH₃ intercalated TiS₂ showed that nitrogen is in the midplane between sulfur layers (10). Neutron powder diffraction of 2H-TaS₂ND₃ by Riekel et al. (11, 12) was also in favor of a midplane position of nitrogen. On the basis of the intensities of the 00l reflections these authors could not distinguish between a model with isotropically rotating ND₃, nitrogen being in the center of the trigonal prism of sulfur, and a model with the C_3 axis of ND₃ in the midplane of sulfur, the molecules spinning around the trigonal axis.

NMR studies of ammonia intercalated $2H-TaS_2$ and $1T-TiS_2$ are in favor of a parallel orientation of the lone pair orbital of nitrogen (Fig. 2b). The molecules spin rapidly around the trigonal (C_3) axis and the C_3 axis also performs reorientations mainly in the basal plane (13-16). Rapid spinning and/or reorientation of the C_3 axis was also found by Riekel *et al.* (17) using quasielastic neutron scattering of $2H-TaS_2NH_3$.

The now commonly accepted ionic model explains the observed midway position of nitrogen in the lattice of the interca-

FIG. 2. The orientation of the ammonia molecule in the van der Waals gap. (a) Plugged in model; the C_3 axes point toward the sulfur layers of sandwiches TS_2 . (b) C_3 axes parallel to the sandwiches; nitrogen in the midplane. (c) NH⁴₄ surrounded by NH₃ molecules.

late in terms of an ion-dipole interaction of a central NH_4^+ group with neighboring NH_3 molecules (Fig. 2c). From this model one expects fast proton exchange; this was however not found from NMR (13-16). Bernard *et al.* (8) supposed that the protons are in fixed positions due to the interaction with the negatively charged sulfur layers.

In this study we report the results of a structure analysis by neutron powder diffraction of TiS_2ND_3 at 300 and 4.2 K. We choose this compound because it is well characterized by chemical methods, X-ray diffraction, and NMR.

Experimental

TiS₂ was prepared from the elements at 600°C. The presence of interlayer titanium was checked by the measurement of the magnetic susceptibility. It was found from the very small paramagnetic upturn at very low temperature (18, 19) that the amount of interlayer titanium is negligibly small.

Since the ammonia intercalates are hygroscopic and exhibit considerable ammonia pressure at room temperature, all sample handling had to be carried out in an atmosphere of dry ND₃ gas. This was done by conventional gas handling methods; ND₃ gas, obtained from Matheson Laboratories, was dried using a column filled with powdered KOH. The intercalation of TiS_2 was performed by condensing an excess of dry ND₃ gas into a 120-ml autoclave containing about 20 g powdered TiS_2 . The autoclave was then sealed and left at room temperature for 4 days. The ND₃ pressure raised to 10 atm. Afterward the excess ND₃ was removed under a pressure of 1 atm. The transfer into the sample tube for neutron powder diffraction was proceeded as fast as possible and under a continuous outlet of dry ND₃ gas.

Neutron Powder Diffraction of 3*R*-TiS₂ND₃

Collection of powder data was performed at the high-flux reactor of the ECN at Petten, The Netherlands. Neutrons of wavelength 2.59 Å were obtained from the (111) plane of a copper crystal. The λ/n components were reduced to less than 0.1% using a filter of pyrolytic graphite. Soller slits with a horizontal divergence of 30' were placed between the reactor and monochromator and in front of the four ³He counters. The diagrams were taken with the sample at 300 and 4.2 K; the diagram taken at 300 K is shown in Fig. 3. The diagram is split up in parts because of the over-

FIG. 3. Neutron diffraction diagram of TiS_2ND_3 taken at 300 K; the diagram is split in several parts. (a) 350-590 dmc (003); (b) 850-1010 dmc (006); (c) 1350-1740 dmc; (d) 2630-4170 dmc. The calculated positions (Table I) are indicated at the bottom.

whelming intensity of 003. No drastic changes are noticed in the relative intensities of the diffraction lines recorded at both temperatures. The reflections correspond to the rhombohedral unit cell discussed above, with a = 3.419(1) Å, c = 27.030(14)Å at 300 K and a = 3.405(2) Å, c =26.689(22) Å at 4.2 K (hexagonal setting; standard deviations are in parentheses). The cell constants at 300 K differ from those reported by Chianelli et al. (10) for $3R-TiS_2NH_3$, a = 3.427(2) Å, c = 26.55 Å. This is probably due to a different ammonia content since the main difference is in the length of the c axis. Integrated intensities obtained from the number of counts after correcting for the background scattering are given in Table I. The intensity of 003 was given the relative value 1000. Some of the observed peaks consist of overlapping reflections.

Intensities were calculated on the basis of the rhombohedral structure from X-ray diffraction (10). Model calculations were performed similar to those used in our neutron powder diffraction study of the intercalate $Na_{0.6}(D_2O)_2VS_2$ and $Na_{0.6}(D_2O)_2VS_2$ (20). In this intercalate the Na^+ ion is surrounded by "rotating" D_2O molecules. The same type of calculations were later used by Riekel *et al.* (11, 12) in a neutron diffraction study of 2H-TaS₂ND₃.

It was assumed that the N–D bond length is 1.0 Å (equal to the N–D distance in solid

TABLE I

Observed and Calculated Neutron Powder Diffraction Intensities of 3R-TiS₂ND₃ at 300 K

hkl	$2\theta^d$ (dmc)	<i>I</i> (0) ^{<i>a</i>}	<i>I</i> (c) ^{<i>b</i>}
003	457.4	1000	1322
006	926.2	75	98
009	1416.9	104	94
101	1450.0	<2	1
012	1477.5	50	41
104	1584.2	100	97
015	1661.3	20	20
107	1857.4	<2	0
0012	1947.1	<2	0
018	1974.7	<2	1
1010	2245.8	<2	1
0111	2400.0	с	_
0015	2549.3	с	_
110	2737.7	7	5
1013	2751.6 🕽		3
113	2804.4	3	3
0114	2953.7	15	16
116	3008.2	10	5
0018	3306.1	<2	1
119	3371.1		41
021	3401.7 }	59	9
202	3427.8		1
1016	3449.3	<2	0
024	3535.3	17	17
205	3619.6	<2	1
0117	3752.0	10	13
027	3866.8	<2	4
1112	4001.5	24	16
208	4046.7	<2	0

^{*a*} I(o): the observed intensities from the number of counts: I(o) of 003 was given the relative value 1000.

^b I(c): intensities calculated for isotropically rotating ND₃ with parameters given in Table II. Scaling with I(o) using 006, 009, 012, 104, and 015.

^c Reflections omitted because of interference with peaks from the sample holder.

 $^{d} 2\theta$ in dmc; $360^{\circ} = 10^{4}$ dmc.

ND₃ (21)). The scattering lengths of atoms (b(N) = 0.93, b(D) = 0.667, b(Ti) = -0.35, b(S) = 0.285: all in units of 10^{-12} cm) are from a compilation by Koester and Yelon (22).

The model for which the intensity of the powder lines can easily be calculated and for which a refinement procedure can be performed using the X-ray system (23) is

the model with nitrogen at the center of the trigonal prism of sulfur atoms and deuterium at the surface of a sphere around nitrogen with a radius of 1.0 Å. The scattering length of this isotropically rotating ND₃ molecule is given by (24)

$$b=\frac{b(N)+3b(D)\sin(kR)}{kR},$$

in which b(N) and b(D) are the scattering lengths of nitrogen and deuterium, respectively; R, the N-D distance, is 1.0 Å, and $k = 4\pi \sin \theta / \lambda$. The powder intensities of the Bragg reflections were calculated using

$$I = m^* |F|^2 / (\sin \theta \sin 2\theta),$$

where F is the structure factor, m the multiplicity, and $(\sin \theta \sin 2\theta)$ the geometrical factor (25).

The intensities calculated in space group R3m (both trigonal-prismatic sites occupied statistically for one-half) with an overall isotropic temperature factor of the atoms were in reasonable agreement with the observed intensities of Table I. The same calculation in space group R3m (ND₃) present in only one of the two sites) was considerably worse. The intensities of some reflections calculated in R3m differ considerably from the observed intensities: this may be due to the fact that (a) the model is in principle correct but the temperature motion is more complicated than assumed, (b) the model of an isotropically rotating ND₃ molecule is not correct and other models for intercalated ND₃ must be considered, e.g., models with the C_3 axis of the ND₃ molecules parallel to the TiS₂ sandwiches. There were no indications of strong preferent orientation of the powder particles in the sample holder; one expects in that case 00/ reflections and 10/ reflections with *l* large to be systematically weaker than expected.

A further analysis was made using the X-ray system (23) on the basis of the structure factors calculated from the observed

396

IADLE II
COORDINATES AND THERMAL PARAMETERS OF
3R-TiS ₂ ND ₃ from a Refinement Using the
X-RAY SYSTEM

TADLET

Atom	Site	Coord.	n	z	U (Ų)
Ti	3a	(000)	1	0	0.031(19)
S	6c	±(00z)	1	0.386(1)	0.022(14)
ND ₃	6c	±(00z)	0.5	0.167(1)	0.167(35)

Note. The atoms are on special positions 3a and 6c of space group $R\overline{3}m$; *n* is the occupancy. Standard deviations are in parentheses.

intensities. For isotropically rotating ND₃ molecules, the scattering factor can be introduced quite simply. A refinement with individual isotropic temperature factors of titanium, sulfur, and the ND₃ molecule revealed a R_f of 0.093. The final parameters are given in Table II. A refinement of the occupancy of the ND₃ site did not lead to significant changes. The isotropically rotating ND₃ molecules show a very large temperature factor; $U = 0.167 \text{ Å}^2$, which corresponds to a root-mean-square amplitude of vibration of 0.41 Å. A refinement with an anisotropic temperature factor for ND₃ did not improve the agreement; there is only a slight difference between U_{11} (in the *ab* plane) and U_{33} (along c). A difference Fourier synthesis did not show deviations at the ND₃ site from which a significant change in the model could be deduced; the main difference densities are in the planes of sulfur and titanium. The difference density is negative at the titanium site and positive at the sulfur site. There is also some density at the unoccupied sites at the trigonal axes in the planes of titanium and sulfur, negative for sites in the titanium plane and positive for sulfur. There are no indications that deuterium is in the plane of titanium as has been found for deuterium atoms in $D_x TaS_2$ and hydrogen atoms in the case of H_xNbS_2 (26).

One may compare these results with those of Riekel et al. (11, 12) from a neutron

powder diffraction study of 2H-TaS₂ND₃. On the basis of the intensities of the 00lreflections only, they could not distinguish between a model of isotropically rotating molecules and a model with the molecules having their C_3 axes lying in the midplane between sulfur layers. It may be noted that from the 00l reflections only, no information can be obtained from a possible preferred orientation of the C_3 axis in the midplane of sulfur. Structure factors for a model with ND₃ molecules spinning around the trigonal axis, which adopts three by symmetry related orientations in the midplane of sulfur, can be calculated with the scattering amplitude for deuterium atoms equal to $b = 3b(D)J^{0}(x)$ with $J^{0}(x)$ the zero-order Bessel function with argument x, $x = kR \sin \alpha$, $k = 4\pi \sin \theta / \lambda$, R =0.95 Å, and α is the angle between the plane of the rotating deuterium atoms and the reflecting plane (24). For this and more complicated models with a midplane C_3 axis, e.g., those with a spread in orientations of the C_3 axis, refinement programs are not available.

For a definite conclusion about the orientation of ammonia and also information about the presence of ND_4^+ one needs a much larger data set, preferably from a single crystal, from which deviations of the spherical symmetric distribution of deuterium around nitrogen can be traced. So far we feel from the information of the difference Fourier synthesis that the model of a spherically symmetric ND_3 molecule must be quite good.

The model of a spherically symmetric ND₃ molecule in our calculations corresponds physically either to a statistical distribution of ND₃ (and ND₄⁺) in all possible orientations or, dynamically, to rotating ND₃ as well as ND₄⁺.

The observation that the intensities change only slightly in going from 300 to 4.2 K indicates a distribution of orientations even at 4.2 K; at 300 K the molecules must also perform rapid reorientations and diffusion as was found from NMR (13-17).

The neutron diffraction diagrams, taken at 300 K as well as 4.2 K, also show an increased background intensity with a maximum at d = 3.0 Å, a distance close to the intermolecular N-N distance of 3.35 Å in solid ND₃ (21). This diffuse scattering may be due to ND₃ not registered with the TiS₂ND₃ lattice.

References

- 1. M. S. WHITTINGHAM, Prog. Solid State Chem. 29, 303 (1979).
- G. V. SUBBA RAO AND M. W. SHAFER, "Physics and Chemistry of Layered Materials" (F. Levy, Ed.), Vol. 6, p. 99, Reidel, Dordrecht (1979).
- R. SCHÖLLHORN, in "Intercalation Chemistry" (M. S. Whittingham and A. J. Jacobson, Eds.), Academic Press, New York (1982).
- F. R. GAMBLE, J. H. OZIECKI, AND F. J. DI-SALVO, J. Chem. Phys. 55, 3525 (1971).
- 5. F. R. GAMBLE, Science 174, 491 (1971).
- 6. R. SCHÖLLHORN AND H. D. ZAGEFKA, Angew. Chem. Int. Ed. 16, 199 (1977).
- 7. R. SCHÖLLHORN, H. D. ZAGEFKA, T. BUTZ, AND A. LERF, *Mater. Res. Bull.* **14**, 369 (1979).
- 8. L. BERNARD, M. MCKELVY, W. GLAUNSINGER, AND P. COLOMBET, Solid State Ionics 15, 301 (1985).
- 9. J. COUSSEAU, L. TRICHET, AND J. ROUXEL, Bull. Soc. Chim. Fr. 3, 872 (1973).
- 10. R. CHIANELLI, J. C. SCANLON, M. S. WHIT-TINGHAM, AND F. R. GAMBLE, *Inorg. Chem.* 14, 1691 (1975).

- 11. C. RIEKEL AND R. SCHÖLLHORN, Mater. Res. Bull. 11, 369 (1976).
- 12. C. RIEKEL, Prog. Solid State Chem. 13, 89 (1980).
- 13. F. R. GAMBLE AND B. G. SILBERNAGEL, J. Chem. Phys. 63, 2544 (1975).
- 14. B. G. SILBERNAGEL AND F. R. GAMBLE, Phys. Rev. Lett. 32, 1436 (1974).
- B. G. SILBERNAGEL, M. B. DINES, F. R. GAMBLE, L. A. GEBHARD, AND M. S. WHFTTINGHAM, J. Chem. Phys. 65, 1906 (1976).
- R. L. KLEINBERG AND B. G. SILBERNAGEL, Solid State Commun. 33, 867 (1980).
- 17. C. RIEKEL, H. HEIDEMANN, B. E. F. FENDER, AND G. C. STIRLING, J. Chem. Phys. 71, 530 (1979).
- H. J. M. BOUWMEESTER, G. A. WIEGERS, AND C. F. VAN BRUGGEN, J. Solid State Chem. 70, 58 (1987).
- 19. G. A. WIEGERS, R. J. HAANGE, AND C. F. VAN BRUGGEN, Synth. Met. 9, 9 (1984).
- A. J. A. BOS-ALBERINK, R. J. HAANGE, AND G.
 A. WIEGERS, J. Less-Common Met. 63, 69 (1979).
- 21. J. W. REED AND P. M. HARRIS, J. Chem. Phys. 35, 1730 (1961).
- 22. Compilation by L. KOESTER AND W. B. YELON, "Neutron Diffraction Newsletter," 1982.
- 23. J. M. STEWART, P. A. MACHIN, C. DICKINSON, H. AMMON, L. HECK, AND H. FLACK, "The X-Ray 76 system," Technical Report TR-446, Computer Science Center, University of Maryland, College Park, MD.
- 24. W. H. ZACHARIASEN, "Theory of X-Ray Diffraction in Crystals," p. 223, Wiley, New York/ London (1946).
- G. E. BACON, "Neutron Diffraction," p. 62, Oxford Univ. Press, London/New York (1962).
- 26. C. RIEKEL, H. G. REZNIK, R. SCHÖLLHORN, AND C. J. WRIGHT, J. Chem Phys. 70, 5203 (1979).